Dosimetric characterization and output verification for conical brachytherapy surface applicators. Part II. High dose rate 192Ir sources.
نویسندگان
چکیده
PURPOSE Historically, treatment of malignant surface lesions has been achieved with linear accelerator based electron beams or superficial x-ray beams. Recent developments in the field of brachytherapy now allow for the treatment of surface lesions with specialized conical applicators placed directly on the lesion. Applicators are available for use with high dose rate (HDR)(192)Ir sources, as well as electronic brachytherapy sources. Part I of this paper discussed the applicators used with electronic brachytherapy sources. Part II will discuss those used with HDR (192)Ir sources. Although the use of these applicators has gained in popularity, the dosimetric characteristics have not been independently verified. Additionally, there is no recognized method of output verification for quality assurance procedures with applicators like these. METHODS This work aims to create a cohesive method of output verification that can be used to determine the dose at the treatment surface as part of a quality assurance/commissioning process for surface applicators used with HDR electronic brachytherapy sources (Part I) and(192)Ir sources (Part II). Air-kerma rate measurements for the (192)Ir sources were completed with several models of small-volume ionization chambers to obtain an air-kerma rate at the treatment surface for each applicator. Correction factors were calculated using MCNP5 and EGSnrc Monte Carlo codes in order to determine an applicator-specific absorbed dose to water at the treatment surface from the measured air-kerma rate. Additionally, relative dose measurements of the surface dose distributions and characteristic depth dose curves were completed in-phantom. RESULTS Theoretical dose distributions and depth dose curves were generated for each applicator and agreed well with the measured values. A method of output verification was created that allows users to determine the applicator-specific dose to water at the treatment surface based on a measured air-kerma rate. CONCLUSIONS The novel output verification methods described in this work will reduce uncertainties in dose delivery for treatments with these kinds of surface applicators, ultimately improving patient care.
منابع مشابه
Dosimetric characterization and output verification for conical brachytherapy surface applicators. Part I. Electronic brachytherapy source.
PURPOSE Historically, treatment of malignant surface lesions has been achieved with linear accelerator based electron beams or superficial x-ray beams. Recent developments in the field of brachytherapy now allow for the treatment of surface lesions with specialized conical applicators placed directly on the lesion. Applicators are available for use with high dose rate (HDR)(192)Ir sources, as w...
متن کاملDetermination of TG-43 Dosimetric Parameters for Photon Emitting Brachytherapy Sources
Objective: Brachytherapy sources are widely used for the treatment of cancer. The report of Task Group No. 43 (TG-43) of American Association of Physicists in Medicine is known as the most common method for the determination of dosimetric parameters for brachytherapy sources. The aim of this study is to obtain TG-43 dosimetric parameters for 60Co, 137Cs, 192Ir and 103Pd brachyt...
متن کاملEvaluation of dose distribution and dose gradient in brachytherapy cylindrical applicators using a dedicated Phantom for Iridium-192 and Cobalt-60 HDR sources
Introduction: A study was performed to evaluate radiation dose distribution and dose gradient around cylindrical applicators for high-dose-rate (HDR) brachytherapy systems with 192Ir, 60Co brachytherapy source applied for rectal and vaginal cancers treatments. Materials and Methods: Two additional computed tomography (CT) based plans were generated using a ...
متن کاملDosimetric characterization of round HDR 192Ir accuboost applicators for breast brachytherapy.
PURPOSE The AccuBoost brachytherapy system applies HDR 192Ir beams peripherally to the breast using collimating applicators. The purpose of this study was to benchmark Monte Carlo simulations of the HDR 192Ir source, to dosimetrically characterize the round applicators using established Monte Carlo simulation and radiation measurement techniques and to gather data for clinical use. METHODS Do...
متن کاملVerification of delivered dose to the Lips carcinoma tumors with HDR brachytherapy sources: 192Ir and 60CO in an exclusive plexiglass Phantom.
Introduction: Brachytherapy, especially using manually after loaded Iridium-192 and Cobalt-60, can be applied as a sole treatment, as a treatment complementary to surgery, and as a local boost in combination with EBRT. The use of HDR brachytherapy catheters incorporated in removable dental molds allows repeated, highly reproducible, fractionated outpatient brachytherapy of supe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 41 2 شماره
صفحات -
تاریخ انتشار 2014